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We make use of the conditions of statics 
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After carrying out all the calculations, we obtain 

T = 41.~3 
a0 aA 

shnByly,’ 
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Expressions (3.2) and (3.3) enable us to determine the displacements of the punch 

(3.4) 

In the case of an isotropic half-space the formulas (3.4) yield a solution which is in 

agreement with that given in Cl]. 
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The equations of the theory of perfect plasticity are derived in terms of the components 
of displacement velocities. These equations are analogous to the Lamk equations in the 

theory of elasticity, when displacements are treated as the unknowns. 
In the theory of perfect plasticity the components of stress can be expressed in terms 

of the components of displacement velocities by means of the following formulas p, 21: 

cii j ==ar);aeij (1) 

where 1) == D (vi,) is rhe dissipation function, and eij are the components of the velo- 

city of plastic deformation (for the sake of simplicity, the body is assumed rigidly plas- 
tic). 

Substituting expressions (1) into the equations of equilibrium 

c-ij j + Fi r= 0 (9 
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we obtain 
(20 a/Jijl,; i“ (1 ,.::m 

If we now convert (3) to the components of displacement velocities Ili by means of 

the following formulas : cij 1;:: (u Ii, i) ‘32 7 I:, 

then the three equations (3) define the closed system of equations of the theory of per- 

fect plasticity in terms of the three components of displacement velocities tri. 

These equations are analogous to the Lamk equations in the theory of elasticity. 

Let us consider the case of an incompressible material. We shall designate the com- 

ponents of the deviator by a prime 
Pij’ Pij -~ ehij, e -: l!,p 

’ fi L 
(5\ 

The dissipation function can be written as 1) D (P’,,, (1). Formula (1) hecomes 

i)D dr,,,. 1 au 
;,j dr,;;,~- Tg -T Fi”(j. (Ii) 

Using the notation ~11 O,\.’ /‘I., _ I’., ?, . . we have 

i)CJ,’ II 1 
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The symbol (.zyz) indicates that the expressions which have not been written out expli- 

citly are obtainable by cyclic permutation of the indices. From (6) and (7) we have 

2 i?D 1 aI) 1 i)D 1 an 
z ,.< 

dll 
:i de,’ - 3 dr,,’ 

~- - 
:i g/,7 ~. :;, jp ’ ?.\!I = ,jr;l, (xl/;) i(i) 

Summation of the first three expressions in (8) yields 

j- /. ‘,‘l,;V : ‘; II ;.j -: 1 !ad[) ,)P i’J) 

Equation (8) takes now the form 

‘I alJ t Ll 1 dl) i 30 dD 
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Formulas (10) relate the components of the deviator of stress to that of deformation. 

For an incompressible material E .= 0 and the prime can be left out in components eij. 

Then, the final form of (10) for an incompressible material is 

au 1 
( 

131) aD 
Gx-;=---;- -- 8P, ,3 ar, ~-&$+j, Txy- aGu (I i, -_) (11) 

The value of u cannot be determined from (9) in the case of an incompressible mate- 

rial and remains indefinite, similarly as in the theory of elasticity. 

Substitution of (11) into equilibrium equations (2) produces three equations with four 

unknowns: u, (ix, Q, 1~~. 

This system of equations is closed by the equation expressing the incompressibility 

which is du, &I” au, 
xi-,,+,z=o (12) 

It is a matter of common knowledge @] that the edge of the dissipation function in 

space ‘i corresponds to the boundary of the condition of plasticity in the space of prin- 

cipal stresses ui . 
In this case, formulas (11) become of more general nature and take the following form: 
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Vl + v2 + . . . + v, = 1 

let us consider actual expressions of the dissipation function under the conditions of 
plasticity of the maximum shear stress (condition of Tresca), maximum reduced stress 
and condition of von Mises. 

In terms of the components of principal stresses, the plasticity condition of Tresca is 
US - oj 1 = 2k. 

In accordance with the associated flow rule, we have for the edge of the Tresca prism 

ei = h, ej = - h, ek = 0, h >, 0 

To the edge of the Tresca prism corresponds the boundary of the dissipation function, 
defined as the intersection of planes in the space of principal deformation velocities 

DI = eiei = 2kh = Bkei, D, = - 2kej (14) 
The initial condition of plasticity is easily obtained from (14) and (13). 

When (14) is rewritten in terms of tensor components eij, we can obtain from (13) 
and equilibrium equations (2) the initial equations expressed in terms of the components 
of displacement velocities. 

We write the equations of the edge of Tresca prism as 

ei - “j = .2k, q-alr=f2k 
Hence, 

ei =&+P., ej = - &, ek=-p 

Our dissipation function has now the following form: 

D =: oiei = 2k (lr. + p) = 2k Iei] 

Making use of the expressions for the second and third invariants of the deviator of 
deformation velocity J2, J,, we easily derive the equation defining our dissipation func- 
tion, namely : p - 2k2J,D - %k3J3 = 0, 62 = ii -j- eT+e$, .Ja = eiejek (1.5) 

The condition of plasticity of the maximum reduced stress in terms of the components 
of principal stresses is of the form 2oi - oj - uk .I = 2k. 

For the edge of the prism, the conditions of the maximum reduced stress are 

Ci = 2h, ej = - h, ek = --A, h>O 

To the boundary of the condition of plasticity of the maximum reduced stress corre- 
sponds the edge of the prism of the dissipation function which can be considered to be 
the intersection of the planes 

Di =: 2kh = ‘/Sk (ei - er), Da = 2/3k (ei - ek) t1f3 

For the edge of the prism of maximum reduced stress 
2~i - 5j - =k = f 2k, 2~j - CY~ - Si = _+ 2k 

we have 
Ci = 2h - p* ej=-h-+2@, 6?k=---;1-p 

The expression for the dissipation function is of the form D = 2k 1 ei + ej 1. 
It can be easily be shown that the dissipation function can be determined from 

D3 - 2kaJz D-f 8kaJs = 0 

Finally, for the von Mises condition of plasticity Uij’Uij’ = 2kZ. it must be true that 
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In the case of plane deformation, a11 conditions of plasticity are reduced to a single 
condition 0% - o2 = 2k, oT1 > a,. The dissipation function is then 

D = k 1/2eijeij = k I/Z (ex’ + ezlZ -+- %,,2)‘/” (ii) 
From (11) and (I’?) we obtain 

GX 
’ I= ke, VW%, S?/ ’ = ke, vrj?s, zxy = kexy fLv2 08) 

Substituting (18) into the equations of equilibrium and adding the equation expressing 

the incompressibility, i.e. cX + py = ~1, we obtain finally the equations which we 
intended to derive 

Other particular cases can be investigated in an analogous manner. 
The authors thank G, I. Bykovtsev for his valuable comments. 
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An approximate solution of problems of linear vis~l)elasticity is derived. The method 

is applicable to both ageing and nonageing materials, as well as in numerical solution 

of related problems of elasticity. An estimate is made of the accuracy of the derived 

solution. The problem of a ponderable viscoelastic hemisphere lying on a horizontal 

smooth base is given as an example. 
The solution of quasi-static problems of linear viscoelasticity for bodies with station- 

ary boundaries reduces to the interpretation of the operator functions of viscoelasticity 

[l-3]. In the case of an isotropic material the viscoelastic properties are defined by 
two operators: E and v. The dependence of the solution on operator E, which can be 
determined by uncomplicated experiments on creep or relaxationis simple. The depend- 

ence on operator v whose experimental deternlination is considerably more difficult is 

not negligible. 

If the dependence of a solution on the Poisson ratio is complex. it is possible to obtain 
it by method of approximations [3-S]. 

1, Let us consider an arbitrary parameter of the stress-strain state f (r. v, t) of stressed 
elastic body whose dependence on time is determined by the variation of boundary con- 
ditions with time. Solution of the related problem of viscc)elasticity is obtained by the 
substitution in the function f of operator v for the constant V. The exact determination 


